Abstract

Assessing the effects of substituents on the spectra of chlorophylls is essential for gaining a deep understanding of photosynthetic processes. Chlorophyll a and b differ solely in the nature of the 7-substituent (methyl versus formyl), whereas chlorophyll a and d differ solely in the 3-substituent (vinyl versus formyl), yet have distinct long-wavelength absorption maxima: 665 (a) 646 (b) and 692 nm (d). Herein, the spectra, singlet excited-state decay characteristics, and results from DFT calculations are examined for synthetic chlorins and 13(1)-oxophorbines that contain ethynyl, acetyl, formyl and other groups at the 3-, 7- and/or 13-positions. Substituent effects on the absorption spectra are well accounted for using Gouterman's four-orbital model. Key findings are that (1) the dramatic difference in auxochromic effects of a given substituent at the 7- versus 3- or 13-positions primarily derives from relative effects on the LUMO+1 and LUMO; (2) formyl at the 7- or 8-position effectively "porphyrinizes" the chlorin and (3) the substituent effect increases in the order of vinyl < ethynyl < acetyl < formyl. Thus, the spectral properties are governed by an intricate interplay of electronic effects of substituents at particular sites on the four frontier MOs of the chlorin macrocycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call