Abstract

It has been reported that sub-minimal inhibitory concentrations (sub-MICs) of antibiotics are capable of altering bacterial surface properties and phenotype. In this study, the effects of sub-MICs of certain antibiotics on surface hydrophobicity, cell morphology, and protein profile were ascertained using Fusobacterium nucleatum, Porphyromonas gingivalis and Treponema denticola strains, which are pathogenic bacterial species in periodontal diseases. The MICs of antibiotics were determined by culturing bacteria in media supplemented with serially diluted antibiotic solutions, and sub-MIC of antibiotics was used. The effect of sub-MIC of antibiotics on cell morphology was determined by scanning electron microscopy. Microscopic observation of F. nucleatum and P. gingivalis grown at a sub-MIC of amoxicillin revealed cell enlargement. T. denticola grown at a sub-MIC of doxycycline also showed cell elongation. The relative surface hydrophobicity determined by measuring the ability of the bacteria to absorb n-hexadecane revealed an increase in surface hydrophobicity of F. nucleatum grown at sub-MIC of penicillin and amoxicillin, but a decrease with metronidazole; whereas increased hydrophobicity was observed in T. denticola grown at sub-MIC of doxycycline, metronidazole and tetracycline. The surface hydrophobicity of P. gingivalis increased only when grown in sub-MIC of metronidazole. The protein expression profile of the treated bacteria differed from their respective controls. These results confirmed that sub-MIC concentrations of antibiotics can affect the phenotype, surface properties and morphology of periodontal pathogenic anaerobic bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call