Abstract

In this study, we investigated the effects of histone deacetylase (HDAC) inhibitors suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) on the metabolism of polycyclic aromatic hydrocarbons (PAH) in human mammary carcinoma derived MCF-7 cells in culture. Benzo[ a]pyrene (B[ a]P) induces cytochrome P450 (CYP) 1A1, CYP1B1 and other xenobiotic metabolizing enzymes. Results from our study indicated a significant increase in CYP activity in comparison to vehicle control in cells treated with SAHA or TSA as measured by ethoxyresorufin- O-deethylase assay. However, co-treatment with 1.0 μM SAHA and BP, reduced the mRNA levels of CYP1B1 relative to B[ a]P alone. When co-treated with 1.0 μM TSA and BP, a reduction in the mRNA levels of both CYP1A1 and CYP1B1 was observed relative to BP alone. We further investigated to ascertain if the differential expression and activity of CYP1A1 and CYP1B1 influenced levels of B[ a]P DNA adduct formation. MCF-7 cells co-treated with B[ a]P and SAHA or TSA formed DNA adducts, although no significant differences in levels of DNA binding were revealed. These results suggest that while CYP enzyme activity and gene expression were affected by the HDAC inhibitors SAHA and TSA, they had no apparent influence on B[ a]P DNA binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.