Abstract

Salmonella enterica is a pathogen that induces self-limiting gastroenteritis and is of worldwide concern. Nisin, an antimicrobial peptide, has emerged as an alternative for the control of microbial growth but its effect on the virulence of pathogenic bacteria is not yet well-explored. This work aimed to evaluate the virulence of S. enterica in the presence of sub-inhibitory nisin using the experimental model Galleria mellonella. Sub-inhibitory concentrations of nisin of 11.72 and 46.88 μM did not affect the cellular viability of S. enterica but promoted changes in gene expression within 1 h of treatment, with increases of up to 3-fold of pagC, 1.8-fold of invA and 2.3-fold of invF. Larvae of G. mellonella inoculated with S. enterica combined with nisin at 46.88 μM presented mortality, and TL50 noticeably increased to 50% and 80% at 24 and 48 h post-infection, respectively. Defence responses, such as melanisation, nodulation, pseudopodia, immune response, and expression of defence proteins of the larvae G. mellonella were enhanced when the treatments with S. enterica were combined with 11.72 or 46.88 μM nisin. These results show an increase in virulence of S. enterica by sub-MIC concentration of nisin that needs to be explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.