Abstract

The study aims to explore the impact of structural parameters on the formability, mechanical properties, and heat conductivity of body centered cubic (BCC) lattice structures produced through laser powder bed fusion (LPBF). The BCC lattice structures with varied cell diameters and cell sizes were fabricated using LPBF. Surface morphologies, compression properties, and numerical simulation of heat transfer were carried out. Results indicated that the relative density of the BCC structure was influenced by the diameter and size of the cell. An increase in the diameter or a decrease in the size of the cell led to an increase in the relative density of the BCC lattice structure. However, the surface forming quality decreased. On the other hand, the compressive strength of the structure increased, and the heat transfer property was also enhanced. The BCC lattice structure achieved its highest relative density and obtained a peak compressive strength of 320.66 MPa when the cell rod diameter was 1.5 mm and the cell size was 3 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.