Abstract

In order to predict the thermal insulation performance of coated carbon fiber fabric, a numerical heat transfer model under high temperature was established. The simulation results were validated by quartz lamp ablation experiment. The experimental values were in agreement with the numerical values, and the average relative error between them was 9.47%. Furthermore, the impact of structural parameters on the thermal insulation of coated carbon fiber fabrics, by using the numerical heat transfer model, was investigated. The results show that thermal insulation for the samples is in the order of plain < 2/1 twill < 3/3 twill < 5/3 stain, when using constant structure density and yarn fineness. Thermal insulation performance of the samples dramatically increases as yarn fineness goes from 3 to 12 K. Furthermore, when the structure density increases to more than 70 ends/10 cm, the thermal insulation property shows an increasing trend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.