Abstract

Efforts to induce angiogenesis have been dedicated to developing novel strategies to fabricate an ideal scaffold for bone tissue engineering. In order to mimic the environment of the repair process in vivo, this study was performed to investigate the effect of strontium-doped calcium polyphosphate (SCPP) on angiogenesis-related behaviors of umbilical vein endothelial cells and osteoblasts co-cultured in vitro. The results indicate that, compared with those in calcium polyphosphate (CPP) and hydroxyapatite (HA) group, cells attached and spread better with a significantly improved cell proliferation in SCPP group. More importantly, in vitro co-culture demonstrated a significant improvement in the VEGF and bFGF expression levels in SCPP groups. The results also demonstrated that SCPP could effectively enhance VEGF and bFGF expression from host cell in vivo and thereby inducing angiogenesis in implanted scaffolds. SCPP could be used as a potential material with stimulating angiogenesis, which would provide a novel thought for resolving the problem of angiogenesis in bone tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call