Abstract

Some recent studies with irregular roughness suggest that the Nikuradse [Nikuradse, J., NACA TM 1292, National Advisory Committee on Aeronautics (1933)] equivalent sand-grain roughness measure gives inconsistent results of the flow characteristics. In situations where the roughness is very strong to stifle or diminish the viscous effects the viscous scaling laws alone will not be very meaningful. The present study aims to find an alternative scaling parameter for such cases. Here, the measured mean and turbulent velocity profiles on a nonuniform roughness surface, simulating a gas turbine blade roughness, are presented. A nonzero wall normal pressure gradient is caused which is believed to contribute to the velocity deficit in the near-wall rough boundary layer velocity profile. The surface pressure variation is also directly influenced by the local roughness. The normal turbulent stresses are increased on the rough surface, the vertical component more than the longitudinal component. A pressure gradient velocity scale (similar to that proposed for adverse pressure gradient boundary layer modeling by Durbin and Belcher [Durbin, P.A. and Belcher, S.E., J. Fluid Mech. 238 (1992), 699-722] is defined to capture the pressure effects induced by such roughness on the inner layer properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.