Abstract

Gastric cancer is one of the most common types of cancer worldwide. It has been reported that stromal interacting molecule 1 (STIM1) is associated with tumor progression and metastatic spread, including in cervical cancer, breast carcinoma and prostatic cancer. The present study investigated whether STIM1, an endoplasmic reticulum Ca(2+) sensor and activator of store-operated channel entry, contributed to SGC7901 cell progression. The pGPU6-shSTIM1 recombinant plasmid was constructed, and the effects of downregulation of STIM1 on the proliferation, apoptosis, migration and invasion of SGC7901 cells were examined. Western blot analysis revealed that transfection with the pGPU6-shSTIM1 plasmid successfully inhibited the expression of STIM1. STIM1 silencing in the gastric cancer cells significantly inhibited cell proliferation by arresting the cell cycle at the G0/G1 phase, and increasing the apoptotic rate following treatment of the SGC7901 cells with pGPU6-shSTIM1, indicated using an MTT cell viability assay and flow cytometery, respectively. As expected, STIM1 knock down also reduced the migration and invasion of the SGC7901 cells, demonstrated using a Transwell assay. The possible molecular mechanism involved the regulation of several signaling pathways involved in the biological behavior of cell survival, apoptosis, migration and metastasis. Together, these finding suggested that the expression of STIM1 is crucial for the proliferation and invasion of SGC7901 cells, providing a foundation for the development of novel type‑specific diagnostic strategies and treatments for gastric cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call