Abstract

We tested the influence of string stiffness on the occurrence of forearm muscle fatigue during a tennis match. Sixteen tennis players performed two prolonged simulated tennis matches with low-stiffness or high-stiffness string. Before and immediately after exercise, muscle fatigability was evaluated on the forearm muscles during a maximal intermittent gripping task. Groundstroke ball speeds and the profile of acceleration of the racquet frame at collision were recorded during each match. The peak-to-peak amplitude of acceleration and the resonant frequency of the frame were significantly greater with high- (5060 ± 1892 m/s(2) and 204 ± 29 Hz, respectively) than with low-stiffness string (4704 ± 1671 m/s(2) and 191 ± 16 Hz, respectively). The maximal and the averaged gripping forces developed during the gripping task were significantly reduced after the tennis match with high- (-15 ± 14%, and -22 ± 14%, respectively), but not with low-stiffness string. The decrease of ball speed during the simulated matches tended to be greater with high- than with low-stiffness string (P = .06). Hence, playing tennis with high-stiffness string promotes forearm muscle fatigue development, which could partly contribute to the groundstroke ball speed decrement during the game.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call