Abstract
Research on the small-strain (0.001%1%) characteristics of sedimentary soils and sands has advanced to the stage where it has been utilized in engineering analysis and design for some time. Despite the progress, the stiffness characteristics of weathered materials such as completely decomposed granite (CDG) at small strains have still attracted relatively little research attention. This paper describes a systematic laboratory investigation of the small-strain characteristics of intact CDG subjected to various triaxial stress paths, including drained compression and extension tests. The small-strain stiffness was measured using bender elements and internal local transducers. Measurements from bender elements illustrate that the elastic shear modulus of CDG increases as the mean effective stress increases and the void ratio decreases. Significant nonlinear shear stiffness shear strain and bulk modulus volumetric strain relationships were observed. At 0.01% shear strain, the measured average shear stiffness obtained from the extension tests was about 60% higher than that from the compression tests. The average shear stiffness for the tests with a 90° rotation of the stress path was about 50%70% higher than that of tests without a change in the direction of the stress path after saturation.Key words: completely decomposed granite, nonlinearity, small strains, extension, compression, recent stress history.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.