Abstract

AbstractThis paper describes the effects of ambient, thermal and mechanical stress on the adhesion of titanium (Ti) to polyimide (PI). Pull testing on the Ti/PI system shows that metal/polyimide bonding degrades when the composite is thermally cycled. A thermochemical mechanism is proposed that accounts for the interface degradation. We do not treat the adhesive interface as a discrete layer, but rather as a gradual “transition zone” between metal and polymer -- a zone that may grow, and/or change in composition and stress state, thus altering the adhesive properties. The mechanism predicts discontinuities that may develop in the transition zone. Through the use of finite element techniques, it is demonstrated that when loads and displacements are imposed on the composite containing interface discontinuities, large localized stresses develop. Such stresses could explain the experimentally observed low strength failures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.