Abstract

Abstract This paper analyzes the effect of stress on the rock properties fracture and matrix compressibilities, fracture and matrix porosities, and permeability in naturally fractured reservoirs (NFRs). In NFRs, fluids are stored inside the matrix pore space and inside the fractures of the rock. The reservoir characterization parameter indicating the volumetric fraction of fluids deposited inside the fractures is the storage capacity ratio, which is function of the fracture and matrix porosity, and fracture and matrix total compressibilities. Due to the difficulty to obtain these values, in reservoir engineering computations such as pressure transient analysis and reservoir simulation, among others, it is generally assumed that the matrix and the fracture total compressibilities are equal. This induces a big uncertainty in the estimation of the storage capacity ratio and leads to a wrong estimation of the volume of fluids inside the fractured rock. Changes in pore pressure due to production or injection of fluids affect the effective reservoir in-situ stress. The mechanical behavior of the fractured rock and its effects on the rock properties permeability, porosity and compressibility in the matrix and fracture frames are analyzed using the elastic properties bulk modulus and normal compliance of the fracture. These properties can be obtained from petrophysical core analysis or multi-component seismic interpretation, and linked to pressure transient analysis through the storage capacity ratio equation. A step-by-step procedure of the analysis is presented and illustrated with an example for quantifying the effects of changes in effective stress on the fracture and matrix compressibilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call