Abstract

The rate-dependent mechanical properties of Sn3.8Ag0.7Cu (SAC387) Pb-free alloy and Sn-Pb eutectic alloy were investigated in this study under pure shearing and biaxial stress conditions with thin-walled specimens using a servo-controlled tension-torsion material testing system. The pure shearing tests were conducted at strain rates between 6.7 × 10−7 and 1.3 × 10−1/sec. In addition, axial tensile stresses were superimposed onto the shearing samples to examine the effects of biaxial stress conditions on the yielding and on post-yielding plastic flow of the solder alloys. Strain hardening is observed for the Pb-free alloy at all the tested strain rates, while strain softening happens with the Sn-Pb eutectic solder at low strain rates. Special tests were also conducted for sudden strain-rates changes and stress relaxation for the purpose to develop a viscoplastic model to simulate time-dependent multiaxial deformation and to assess damage and fatigue life of general solder interconnections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.