Abstract

The effect of the lattice-mismatch strain and of the charge carrier confinement profile, on the optical properties of thermally annealed self-assembled InxGa1−xAs/GaAs quantum dots (QDs), is theoretically analyzed by using a recently developed 40-band k.p model. First, to evaluate the composition and size of QDs as a function of thermal annealing conditions, we model the In/Ga interdiffusion by a Fickian diffusion. Second, we investigate the decrease of the strain effects on the carrier confinement potentials with annealing by solving the Schrödinger equation separately for electrons and holes. It is clearly found that the strain strongly modifies the QD potential profile, leading to a different electron and hole energy distribution. Finally, we carry on a comparison between theoretical calculations and photoluminescence (PL) experimental results performed in thermal annealed samples. A good agreement is obtained for the energy blueshift and the linewidth narrowing of the PL spectra measured on annealed QD ensemble. These results prove the relevance of the present approach to describe the optoelectronic properties of the nanostructures through the post-growth thermal annealing treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call