Abstract

A two-dimensional (2D) material, the holey 2D C2N (h2D-C2N) crystal, has recently been synthesized. Here, we investigate the strain effects on the properties of this material by first-principles calculations. We show that the material is quite soft with a small stiffness constant and can sustain large strains ≥12%. It remains a direct gap semiconductor under strain, and the bandgap size can be tuned in a wide range as large as 1 eV. Interestingly, for biaxial strain, a band crossing effect occurs at the valence band maximum close to a 8% strain, leading to a dramatic increase of the hole effective mass. Strong optical absorption can be achieved by strain tuning with absorption coefficient ∼106 cm−1 covering a wide spectrum. Our findings suggest the great potential of strain-engineered h2D-C2N in electronic and optoelectronic device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.