Abstract

In this paper, we have studied the effects of temperature, strain and magnetic field on non-extensive entropy of a two-dimensional (2D) quantum dot under spin–orbit interaction. To this end, we have obtained the energy levels and wave functions of the system in the presence of Bychkov–Rashba, Dresselhaus and strain effects by using diagonalization procedure. Then, we have used the Tsallis formalism and calculated the entropy of the system. It is found that the entropy is increased with enhancing the temperature with and without strain. The entropy increases with considering the negative strain. The strain has not strongly effect on the entropy at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call