Abstract

AbstractCarbon black (CB)‐filled alternating copolymers of ethylene‐tetrafluoroethylene (ETFE) composites were prepared by the melt‐mixing method. The effects of strain and temperature on the electrical resistivity of the composites were elucidated in detail. Our results indicated that the CB content and CB particle size are the two main factors that influence the electrical resistance of the composites when they are subjected to strain. The large particle size CB‐filled ETFE composites with a low CB content show a significant increase in electrical resistivity as a function of strain. A linear relationship between the logarithm of the electrical resistivity of the composites and strain was observed, indicating that tunneling conduction plays an important role when the composites are subjected to strain. The tensile testing results indicated that the CB‐filled ETFE composites have reasonably good tensile properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.