Abstract

The Yongyou series of indica-japonica hybrid rice has excellent production potential and storage performance. However, little is known about the underlying mechanism of its storage resistance. In this study, Yongyou 1540 rice (Oryza sativa cv. yongyou 1540) was stored at different temperatures, and the storability was validated though measuring nutritional components and apparent change. In addition, a broad-targeted metabolomic approach coupled with liquid chromatography-mass spectrometry was applied to analyze the metabolite changes. The study found that under high temperature storage conditions (35 °C), Yongyou 1540 was not significantly worse in terms of fatty acid value, whiteness value, and changes in electron microscope profile. A total of 19 key differential metabolites were screened, and lipid metabolites related to palmitoleic acid were found to affect the aging of rice. At the same time, two substances, guanosine 3′,5′-cyclophosphate and pipecolic acid, were beneficial to enhance the resistance of rice under harsh storage conditions, thereby delaying the deterioration of its quality and maintaining its quality. Significant regulation of galactose metabolism, alanine, aspartate and glutamate metabolism, butyrate metabolism, and arginine and proline metabolism pathways were probably responsible for the good storage capacity of Yongyou 1540.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call