Abstract

Conceptual climate models are very simple mathematical representations of climate processes, which are especially useful because their workings can be readily understood. The usual procedure of representing effects of unresolved processes in such models using functions of the prognostic variables (parametrizations) that include no randomness generally results in these models exhibiting substantially less variability than do the phenomena they are intended to simulate. A viable yet still simple alternative is to replace the conventional deterministic parametrizations with stochastic parametrizations, which can be justified theoretically through the central limit theorem. The result is that the model equations are stochastic differential equations. In addition to greatly increasing the magnitude of variability exhibited by these models, and their qualitative fidelity to the corresponding real climate system, representation of unresolved influences by random processes can allow these models to exhibit surprisingly rich new behaviours of which their deterministic counterparts are incapable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.