Abstract

Oxygen (O2) or air is widely applied globally to yield cumene hydroperoxide (CHP) in a cumene oxidation tower. In previous studies, CHP has been identified as a thermally hazardous chemical. This study was used to evaluate thermal hazard of CHP in cumene using differential scanning calorimetry and vent sizing package 2 (VSP2). Self-accelerating decomposition temperature (SADT), self-heating rate, exothermic onset temperature (T0), critical temperature (Tc), time to maximum rate (TMR), activation energy (Ea), etc., were employed to prevent and protect thermal runaway reaction and explosion in the manufacturing process and/or storage area. The reaction order (n) of CHP was evaluated to be 0.5 in this study. The Ea was determined to be 122 kJ mol−1 by VSP2. High volume of CHP with 0 rpm of stirring rate by VSP2 was more dangerous than a low one. Control of stirring rate should be a concern in process safety management program. In view of proactive loss prevention, inherently safer handling procedures and storage situations should be maintained in the chemical industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call