Abstract

This study examined channel interactions using interleaved pulse trains to assess masking and potential facilitative effects in cochlear-implant recipients using clinically relevant stimuli. Psychophysical thresholds were measured for two adjacent mid-array electrodes; one served as the masker and the other as the probe. Two rates representative of those found in present-day strategies were tested: 1700 and 3400 pulses per second per channel. Four masker levels ranging from sub-threshold to loud-but-comfortable were tested. It was hypothesized that low-level maskers would produce facilitative effects, shifting to masking effects at high levels, and that faster rates would yield smaller masking effects due to greater stochastic neural firing patterns. Twenty-nine ears with Cochlear or Advanced Bionics devices were tested. High-level maskers produced more masking than low-level maskers, as expected. Facilitation was not observed for sub-threshold or threshold-level maskers in most cases. High masker levels yielded reduced probe thresholds for two Advanced Bionics subjects. This was partly eliminated with a longer temporal offset between each masker-probe pulse pair, as was used with Cochlear subjects. These findings support the use of temporal gaps between stimulation of subsequent electrodes to reduce channel interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.