Abstract

Several studies have investigated the feasibility of using electrophysiology as an objective tool to efficiently map cochlear implants. A pervasive problem when measuring event-related potentials is the need to remove the direct-current (DC) artifact produced by the cochlear implant. Here, we describe how DC artifact removal can corrupt the response waveform and how the appropriate choice of stimulus duration may minimize this corruption. Event-related potentials were recorded to a synthesized vowel /a/ with a 170- or 400-ms duration. The P2 response, which occurs between 150 and 250 ms, was corrupted by the DC artifact removal algorithm for a 170-ms stimulus duration but was relatively uncorrupted for a 400-ms stimulus duration. To avoid response waveform corruption from DC artifact removal, one should choose a stimulus duration such that the offset of the stimulus does not temporally coincide with the specific peak of interest. While our data have been analyzed with only one specific algorithm, we argue that the length of the stimulus may be a critical factor for any DC artifact removal algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.