Abstract

The purpose of this study was to investigate the effects of stimulation level and electrode pairing on the binaural interaction component (BIC) of the electrically evoked auditory brain stem response (EABR) in Nucleus cochlear implant (CI) users. Ten postlingually deafened adult CI users participated in this study. EABRs were measured using loudness balanced, biphasic current pulses presented in the left monaural, right monaural, and bilateral stimulation conditions. BICs were computed based on measures of the EABR obtained for each subject by pairing the electrode 12 (of 22 intracochlear electrodes) in the right ear with each of 11 electrodes spaced across the electrode array in the left ear. The effect of stimulation level on the amplitude of the BIC was investigated by measuring growth functions of the BIC from six subjects. The effect of electrode pairing on the amplitude of the BIC was studied at high stimulation levels in 10 subjects and at low stimulation levels in seven subjects. The high stimulation level was chosen as the 90% point of the subject's dynamic range (DR) or the highest stimulation level in which the electrophysiologic recordings were not contaminated by muscle artifacts. The low stimulation level was chosen as a level that was 10% point of subject's DR higher than the BIC threshold for six of these seven subjects. For one subject, BIC thresholds were not available and the low stimulation level was referred to the 70% point of subject's DR. BICs were successfully recorded from all 11 interaural electrode pairs for a majority of subjects tested at both stimulation levels. BIC amplitudes increased with stimulation level. The effect of stimulation level on latencies of the BIC was less robust. At high stimulation levels, BIC amplitudes did not change significantly as the stimulating electrode used in the left ear was systematically varied. When low stimulation levels were used, BIC amplitude was maximal for interaural electrode pairs with similar intracochlear positions and decreased when the offset between interaural electrodes increased. This study demonstrates that stimulation level affects amplitudes of the BIC response. It is possible to record the BIC of the EABR in bilateral CI users even from interaural electrode pairs that have large interaural offsets. This finding suggests that when high-level stimuli are used, there is a broad pattern of current spread within the two cochleae. At lower stimulation levels, the spread of excitation within the cochlea is reduced making the effect of electrode pairing on the amplitude of the BIC more pronounced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call