Abstract
The relative importance of the depletion of ergosterol versus the accumulation of precursor or abnormal sterols in the mechanism of fungal growth inhibition by sterol biosynthesis inhibitor fungicides is incompletely understood. In order to investigate this problem further, the degree of inhibition of the growth of Nectria haematococca by fungicides with different enzymatic targets in the sterol biosynthetic pathway was determined and compared with their effects on the sterol profile. The sensitivity of N. haematococca was highest towards fenpropimorph, followed by tebuconazole, terbinafine, fenpropidin and tridemorph. Terbinafine, a squalene epoxidase inhibitor, induced a very large accumulation of squalene without very significant inhibition of ergosterol biosynthesis and growth. The fungus appeared able to tolerate large amounts of squalene. In the case of tebuconazole, a sterol 14α-demethylase inhibitor, it seemed that the accumulation of C4 mono- and dimethyl sterols was responsible for fungitoxicity. Fenpropimorph and fenpropidin seemed to be good inhibitors of both sterol Δ14-reductase and Δ8Δ7-isomerase, whereas tridemorph was a better inhibitor of Δ8Δ7-isomerase than of the Δ14-reductase. Large accumulations of Δ8,14- or Δ8-sterols and correspondingly large decreases in the ergosterol content are both implicated in the fungitoxicity of these compounds in N. haematococca. © 1998 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.