Abstract

BackgroundStoichiometric relations drive powerful constraints in several fundamental ecosystem processes. However, limited studies have been conducted on the ecological stoichiometry of plants after the change of community composition induced by Stellera chamaejasme removal in alpine grassland in the Qinghai–Tibetan Plateau.MethodsWe investigated the effects of S. chamaejasme removal on ecological stoichiometry by estimating the C:N:P stoichiometry in species, functional group and community levels of the ecosystem. The interactions between different species, functional groups and correlation with soil nutrient, responding to S. chamaejasme removal were also analyzed.ResultsFor the plants that became dominant after S. chamaejasme removal (SR), N content decreased and their C:N increased. S. chamaejasme removal significantly affected the nutrient stoichiometry of different functional groups. Specifically, Gramineae in the SR sites had decreased N content and N:P, and increased C:N; however, forbs had increased N content, C:P and N:P and decreased P content and C:N. At the community level, N content was lower and C:N higher in SR communities compared to CK. The N content of the plant community was positively correlated with soil total N content. S. chamaejasme removal could change the nutrient balance from species level, to functional group level, and to community level. Thus, supplementary measures might be cooperated with S. chamaejasme removal for the recovery of S. chamaejasme-dominated degraded grassland. These results provide insight into the role of S. chamaejasme in ecological protection and conservation, and the conclusions from this study could be used to develop effective and sustainable measures for S. chamaejasme control in the Qinghai–Tibetan Plateau.

Highlights

  • Ecological stoichiometry is used to examine the relationships between organisms and ecosystem structure and function, and reflects the dynamic balance of multiple key element, most carbon (C), nitrogen (N) and phosphorus (P), in ecological system (Elser et al, 1996, 2000; Sterner & Elser, 2002)

  • Hierarchical responses of plant stoichiometry At species level, total C content of green leaves varied between species, but no significant difference was found between S. chamaejasme removal (SR) and CK (Fig. 1A; Table 1)

  • Significantly lower N contents were observed in the green leaves of E. nutans, P. crymophila, K. litvinowii and S. aliena in SR than CK (Fig. 1C)

Read more

Summary

Introduction

Ecological stoichiometry is used to examine the relationships between organisms and ecosystem structure and function, and reflects the dynamic balance of multiple key element, most carbon (C), nitrogen (N) and phosphorus (P), in ecological system (Elser et al, 1996, 2000; Sterner & Elser, 2002). Limited studies have been conducted on the ecological stoichiometry of plants after the change of community composition induced by Stellera chamaejasme removal in alpine grassland in the Qinghai–Tibetan Plateau. Methods: We investigated the effects of S. chamaejasme removal on ecological stoichiometry by estimating the C:N:P stoichiometry in species, functional group and community levels of the ecosystem. S. chamaejasme removal could change the nutrient balance from species level, to functional group level, and to community level. Supplementary measures might be cooperated with S. chamaejasme removal for the recovery of S. chamaejasme-dominated degraded grassland These results provide insight into the role of S. chamaejasme in ecological protection and conservation, and the conclusions from this study could be used to develop effective and sustainable measures for S. chamaejasme control in the Qinghai–Tibetan Plateau

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.