Abstract

AbstractRecent observations have revealed the existence of stellar mass black hole (BH) candidates in some globular clusters (GC) in the Milky Way and in other galaxies. Given that the detection of BHs is challenging, these detections likely indicate the existence of large populations of BHs in these clusters. This is in direct contrast to the past understanding that at most a handful of BHs may remain in old GCs due to quick mass segregation and rapid mutual dynamical ejection. Modern realistic star-by-star numerical simulations suggest that the retention fraction of BHs is typically much higher than what was previously thought. The BH dynamics near the cluster center leads to dynamical formation of new binaries and dynamical ejections, and acts as a persistent and significant energy source for these clusters. We have started exploring effects of BHs on the global evolution and survival of star clusters. We find that the evolution as well as survival of massive star clusters can critically depend on the details of the initial assumptions related to BH formation physics, such as natal kick distribution, and the initial stellar mass function (IMF). In this article we will present our latest results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.