Abstract

The use of hydrogen in small scale gas turbines is currently limited by several issues. Blending hydrogen with methane or other gaseous fuels can be considered a low medium-term viable solution, with the goal of reducing greenhouse gas emissions. In fact, only small amounts can be mixed with methane in premixed combustors, due to the risk of flashback. The aim of this article is to investigate the injection of small quantities of steam as a method of increasing the maximum permissible hydrogen content in a mixture with methane. The proposed approach involves introducing the steam directly into the combustion chamber into the main fuel feeding system of a Turbec T100. The study is carried out by means of CFD analysis of the combustion process. A thermodynamic analysis of the energy system is used to determine boundary conditions. The combustion chamber is discretized using a three-dimensional mesh consisting of 4.7 million nodes and the RANS RSM model is used to simulate the effects of turbulence. The results show that the addition of steam may triple the permissible percentage of hydrogen in the mixture for the considered MGT, passing from 10% to over 30% by volume, also leading to a reduction in NOx emissions without a significant variation in CO emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call