Abstract

ABSTRACT We investigated the effects of the steady wave force variations generated by oblique motions upon ship manoeuvre estimations, using a numerical simulation that incorporated only steady wave forces into a three-degrees-of-freedom conventional modular mathematical model in calm water. The investigation was conducted for a very large crude carrier undergoing course-keeping manoeuvres in regular short waves. The steady wave forces in the simulation were provided via two methods, depending on the experimental data and the presence or absence of a ship drift angle. The simulation was validated via a free-running model test; this involved various rudder effectiveness conditions for the ship model and full-scale ships, both with and without engine limits. Through this validation, we showed that the steady wave force variations generated by oblique motions are non-negligible when accurately estimating the manoeuvres of full-scale ships in short waves, although they are negligible for ship models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.