Abstract
Correlations in open quantum systems exhibit peculiar phenomena under the effect of various sources of noise. Here, we investigate the dynamics of entanglement and quantum discord (QD) for three noninteracting qubits coupled with a classical environmental static noise characterized by an external random field. Two initial entangled states of the system are examined, namely, the GHZ- and [Formula: see text]-type states. The system-environment interaction is here analyzed in three different configurations, namely, independent, mixed and common environments. We find that the dynamics of quantum correlations are strongly affected by the type of system-environment interaction and the purity of the initial entangled state. Indeed, depending on the type of interaction and the value of the purity of the initial state, peculiar phenomena such as sudden death, revivals and long-time survival of quantum correlations are observed. On the other hand, our results clearly show that quantum correlations initially present in the [Formula: see text]-type states are less robust than those of the GHZ-type states. Furthermore, we find that the long-time survival of entanglement can be detected by means of the suitable entanglement witnesses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.