Abstract
To evaluated the effects of moderate-intensity static magnetic fields (SMF) on two types of voltage-gated potassium channel (VGPC) currents: I K,A and I K,V, whole-cell patch-clamp experiments were conducted on acute dissociated rat trigeminal root ganglion (TRG) neurons. The results demonstrated that 125 mT SMF could influence the inactivation kinetics of these two VGPC currents by altering the inactivation rate and velocity. No significant change was observed in the activation properties. These findings supported the hypothesis that biological membrane would be deformed in moderate-intensity SMF and the physiological characteristics of ion channels on the membrane would be influenced. The mechanism underlying the different effects of SMF on the I K,A and I K,V inactivation was also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.