Abstract

The effect of static and alternating magnetic fields assisted freezing with intensity of 1, 2, and 3 mT on the microstructure and protein properties of channel catfish fillet were investigated. The results showed that the magnetic field treatment shortened the phase transition time of freezing, and significantly reduced the size of the formed ice crystals. The changes of trichloroacetic acid-soluble peptide, Ca2+-ATPase activity, particle size, and Zeta potential, which represented solubility, denaturation and aggregation of protein, indicated that magnetic field treatment could improve the protein stability. The chemical force analysis, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and Fourier transform infrared spectroscopy (FTIR) results proved that the magnetic field could change the structure of protein. Furthermore, these changes had effects on the thermal stability of catfish meat protein which reflected by increasing of the transition temperature and enthalpy. However, the waveform and intensity of magnetic field affected the stability of protein structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call