Abstract

Al effects on strain aging and resistance against hydrogen embrittlement were examined in Fe–18Mn–0.6C-based twinning-induced plasticity steels deformed at different strain rates. These steels showed a hydrogen-induced fracture when they were pre-deformed at a strain rate of 1.7×10–6 s–1. This fracture was suppressed by increasing the strain rate and Al content. The two important factors for improving the resistance to hydrogen embrittlement from the viewpoint of material strengthening by strain aging were found to be (1) the suppression of dynamic strain aging by increasing the strain rate and Al content, and (2) the suppression of static strain aging under loading by the Al addition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.