Abstract
This paper addresses the state-dependent impulsive effects on robust exponential stability of quaternion-valued neural networks (QVNNs) with parametric uncertainties. In view of the noncommutativity of quaternion multiplication, we have to separate the concerned quaternion-valued models into four real-valued parts. Then, several assumptions ensuring every solution of the separated state-dependent impulsive neural networks intersects each of the discontinuous surface exactly once are proposed. In the meantime, by applying the B -equivalent method, the addressed state-dependent impulsive models are reduced to fixed-time ones, and the latter can be regarded as the comparative systems of the former. For the subsequent analysis, we proposed a novel norm inequality of block matrix, which can be utilized to analyze the same stability properties of the separated state-dependent impulsive models and the reduced ones efficaciously. Afterward, several sufficient conditions are well presented to guarantee the robust exponential stability of the origin of the considered models; it is worth mentioning that two cases of addressed models are analyzed concretely, that is, models with exponential stable continuous subsystems and destabilizing impulses, and models with unstable continuous subsystems and stabilizing impulses. In addition, an application case corresponding to the stability problem of models with unstable continuous subsystems and stabilizing impulses for state-dependent impulse control to robust exponential synchronization of QVNNs is considered summarily. Finally, some numerical examples are proffered to illustrate the effectiveness and correctness of the obtained results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.