Abstract

Lipids are crucial nutrients for survival and development of crustacean larvae. This study investigated the effects of starvation on survival, body weight, and lipid composition of newly hatched larvae of Portunus pelagicus. The results showed that during starvation, average survival time of newly hatched zoea I larvae was 3.87 days. A significant decreasing trend was detected for individual dry weight (DW) during starvation and was described as DW = 0.2x2 − 1.462x + 15.023, R2 = 0.9985, where x is the starvation duration in days. DW and total lipids decreased by 17.42 and 38.46 % after 3 days of starvation, respectively. For newly hatched larvae, total lipids were dominated by phospholipids (PL) (75.55–93.57 %) and 50.39 % of PL were utilized during the 3-day starvation period. This indicates that membrane structural lipids of newly hatched P. pelagicus larvae were oxidized as an energy source during continuous starvation. There were concurrent increases in free fatty acids and cholesterol that probably resulted from the decomposition of sterol esters to free fatty acids and cholesterol. Newly hatched P. pelagicus larvae contained substantially higher levels of 20:5n3 (18.90 %) and 22:6n3 (18.24 %) than other Portunid crabs. During starvation, the highest fatty acid reduction rates were found for 20:4n6, 20:5n3, and 22:6n3 (P < 0.05), and the preferential depletion of these fatty acids may suggest that the HUFA requirements of early P. pelagicus larvae are lower than those of the other Portunids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call