Abstract

Experimental results on the electrical and thermal characteristics of GdBCO racetrack coils co-wound with stainless steel (SS) tapes of various thicknesses and winding tensions are presented in this paper. The SS thickness and winding tension are identified as the factors affecting the charging time and thermal stability of metal insulation (MI) coils. To verify these characteristics, three types of MI-SS racetrack coils were fabricated with various SS thicknesses and winding tensions: 100-μm SS thickness and 10-kgf winding tension; 100-μm SS thickness and 5-kgf winding tension; and 50-μm SS thickness and 10-kgf winding tension. Further, three MI-SS racetrack coils were characterized by sudden discharging, charging, and overcurrent tests. The sudden discharging and charging tests were performed in a steady state to investigate the decay time constant of the center magnetic field discharging the coils and the delay time of the magnetic field charging the test coils, respectively. To estimate the thermal stability of the three MI-SS coils, overcurrent tests were conducted in a transient state at 1.1 times the critical current (Ic) and 1.05 Ic. Based on the experimental results of three small-scale test coils, the total contact resistance between the layers of the test coils was calculated and applied to design a field winding using a second-generation high-temperature superconducting (HTS) tape for a 10-MW-class HTS generator used in an offshore wind turbine environment. Subsequently, an equivalent electrical circuit model was proposed to analyze the electromagnetic response and thermal stability characteristics of three HTS field coils of a 10-MW-class HTS generator with the key parameters of the HTS field coils, which were obtained using electromagnetic finite-element analysis. Finally, the charging delay time and thermal stability of the three HTS field coils were compared and analyzed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.