Abstract

The 15Cr-9Ni-Nb austenitic stainless steel weld metal with a Si content of 3.5 wt% was prepared via gas tungsten arc welding and then held at 900 °C for 3 h for the stabilized heat treatment (SHT). The stress rupture properties of the as-welded (AW) and SHT weld metals at 550 °C were evaluated via the Larson-Miller parameter. The microstructure evolution was discussed during the 550 °C stress rupture process. The coarse σ-phase and relatively fine G-phase formed on the δ-ferrite during aging at 550 °C. In the AW weld metal, the continuous δ-ferrite with a large amount of coarse σ-phase led to the formation and expansion of cracks during the stress rupture process, which accelerated the eventual rupture and damaged the stress rupture properties. The SHT decreased the δ-ferrite content and formed a large amount of nanoscale NbC precipitated in the matrix. The decreased δ-ferrite content avoided the rapid formation and expansion of cracks and the nanoscale NbC blocked the dislocation movement during the stress rupture process, which improved the stress rupture properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.