Abstract

Gas turbines for power generation are exposed to a variety of ambient conditions and are therefore bound to breathe contaminated airflow, thus degrading the engines internal gas path. In particular, accumulated debris on the compressor blades reduces engine efficiency. To recover this performance loss, online compressor washes may be performed. Cleaning fluid is injected through the nozzles upstream of the compressor to wash off the debris from the blades. This paper presents a numerical study of a generic compressor washing system based on an application case for a heavy duty gas turbine power plant. The inlet duct of the engine was modeled and droplet trajectories were calculated. Different spray patterns including single jet and full cone have been investigated for different ranges of injection velocity and droplet size. The spray angle was evaluated experimentally and was used to model the full cone spray pattern. The boundary conditions for the airflow were iterated with a performance simulation tool to match pressure loss and mass flow. To investigate the effect of different operating conditions on the airflow and spray distribution, an installation scenario of the engine at altitude on a hot summer day was modeled. The scenario was based on a review of plant installations and local meteorological conditions. Fluid concentration plots at the compressor inlet plane were evaluated for the different computational cases. Generally with lower injection momentum, the water droplets were significantly deflected by the main airflow. Higher injection velocity and droplet size reduced the effect of the main airflow. Different operating conditions and the significant change of air mass flow affected the spray distribution of the washing system at the compressor inlet. This can be compensated by adjusting the injection angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.