Abstract

Effects of spray parameters (mean droplet size, droplet flux, and droplet velocity) on critical heat flux (CHF) were studied while these parameters were systematically varied. The effect of each parameter was studied while keeping the other two nearly constant. The mean droplet velocity ( V) had the most dominant effect on CHF and the heat transfer coefficient at CHF ( h c), followed by the mean droplet flux ( N). The Sauter mean diameter ( d 32) did not appear to have an effect on CHF. By increasing V, CHF and h c were increased. This trend was observed when all other spray parameters were kept within narrow ranges and even when relaxed to wider ranges, indicating the dominant effect of V. The effect of N, although not so much as V, was also found to be significant. Increasing N resulted in an increase in CHF and h c when other parameters are kept in narrow ranges. A dilute spray with large droplet velocities appears to be more effective in increasing CHF than a denser spray with lower velocities for a given N. The mass flow rate was not a controlling parameter of CHF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.