Abstract

Accurate modelling of spray combustion process is essential for efficiency improvement and emissions reduction in practical combustion engines. In this work, both unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and large eddy simulations (LES) are performed to investigate the effects of spray and turbulence modelling on the mixing and combustion characteristics of an n-heptane spray flame in a constant volume chamber at realistic conditions. The non-reacting spray process is first simulated with URANS to investigate the effects of entrainment gas-jet model on the penetration characteristics and fuel vapor distributions. It is found that the droplet motion near the nozzle has significant influence on the fuel vapor distribution, while the liquid penetration length is controlled by the evaporation process and insensitive to gas-jet model. For the case considered, both URANS with the gas-jet model and large eddy simulations can properly predict the vapor penetration. For the combustion characteristics, it is found that LES yields better predictions in the global combustion characteristics. The URANS with gas jet model yields a comparable flame length and lift-off-length (LOL) to LES, but results in a larger ignition delay time compared to the experimental data. Another focus of this work is to qualify the convergence characteristics of the dynamic adaptive chemistry (DAC) method in these transient combustion simulations, where DAC is applied to reduce the mechanism locally and on-the-fly to accelerate chemistry calculations. The instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length and emissions are compared between simulations with and without DAC. For URANS, good agreements are observed both on instantaneous flame structures and global characteristics. For LES, it is shown that the errors incurred by DAC are small for scatter distributions in composition space and global combustion characteristics, while they may significantly affect instantaneous flame structures in physical space. The study reveals that for DAC application in transient simulations, global or statistic information should be used to assess the accuracy, such as manifolds in composition space, conditional quantities and global combustion characteristics. For the cases investigated, a speed-up factor of more than two is achieved by DAC with a 92-species skeletal mechanism with less than 0.2 % and 3.0 % discrepancy in ignition delay and LOL, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.