Abstract

Chronic suppression of spontaneous bioelectric activity in spinal cord explants in the presence of tetrodotoxin (TTX) during network formation caused a large reduction in cell number (lowered DNA levels). The addition of gangliosides failed to protect against this cell loss. Conversely, the omission of galactose from the growth medium had no effect on DNA levels. It was concluded that the presence or absence of afferent selectivity is unlikely to require the survival of a regionally specific subpopulation of preferred dorsal root ganglion target cells. Neocortical explants also showed a large reduction in DNA levels following chronic TTX treatment, and morphometric analysis confirmed that neuronal survival was affected to the same degree. Chronic ganglioside supplementation failed to influence DNA and cell counts in either control or TTX-treated explants, but one of the added gangliosides (GD1a) stimulated extensive neuritic outgrowth in electrically silenced cultures. Particular ganglioside species, therefore, may exert a growth stimulating influence that can partially compensate for the absence of bioelectric self-stimulation during early development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.