Abstract

Effects of spike frequency adaptation (SFA) on the synchronous behavior of population neurons are investigated in electrically coupled networks with a scale-free property. By a computational approach, we corroborate that pairwise correlations between neurons would decrease if neurons exhibit the feature of SFA, which is similar to previous experimental observations. However, unlike the case of pairwise correlations, population activities of neurons show a rather complex variation mode: compared with those of non-adapted neurons, neurons in the networks having weak-degrees of SFA will impair population synchronizations; while neurons exhibiting strong-degrees of SFA will enhance population synchronizations. Moreover, a variation of coupling strength between neurons will not alter this phenomenon significantly, unless the coupling strength is too weak. Our results suggest that synchronous activity of electrically coupled population neurons is adaptation-dependent, and this adaptive feature may imply some coding strategies of neuronal populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.