Abstract

Willows produce fast germinating and short-lived seeds, difficult to store in the long-term under controlled conditions. The aim of this study was to examine the feasibility of storage of three Salix spp. at controlled temperatures (3°, −10°, −196 °C). We also analyzed the effect of spermidine (Spd) as an antioxidant factor in desiccated seeds. Collected seeds were either desiccated or hydrated to obtain 10 levels of moisture content (between app. 4% and 2%) and subjected to storage at temperatures 3°, −10°, or −196 °C (liquid nitrogen; LN). After two months, seeds were germinated on the light at 20 °C. Seeds desiccated below a safe range of moisture content were further tested and germinated on filter paper with additions of 0.25 mM Spd solution. After 7 days seedlings were examined for hydrogen peroxide content (H2O2) and total antioxidant capacity (TAC). Fresh seeds of three Salix species: Persian willow (S. aegyptiaca L.), heartleaf willow (S. cordata Michx.) and crack willow (S. ×fragilis L.) were successfully stored at temperature −10° and −196 °C for two months. After cryopreservation seed of S. aegyptiaca, S. cordata, and S. ×fragilis germinated without viability loss in moisture content ranging from 4.4–15.9%, 6.4–18.5%, and 7.1–11.5% respectively. The addition of Spd during germination of desiccated seed did not affect germination capacity. However, seedlings of S. aegyptiaca had lower hydrogen peroxide content in comparison with control (germination on water). Seedlings of S. cordata showed an increase in hydrogen peroxide content in control after storing in LN. In seedlings of Crack willow Spd increased hydrogen peroxide content. Seeds of tested species differ in response to storage conditions. Salix seeds can be stored successfully for two months at −10° or −196 °C without losing viability in the safe range of moisture content. Storing at 3 °C can be used for storage in the narrower range of seeds’ moisture content, however, seedlings stored at this temperature produce a higher level of reactive oxygen species. Germinating seeds in Spd did not increase their germination, however in S. aegyptiaca and S. cordata decreased hydrogen peroxide content

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.