Abstract
Effects of spectral diffusion on the third-order nonlinear susceptibility for two- and three-level quantum systems, immersed in a thermal reservoir, are evaluated with a four-wave mixing (FWM) signal through the density matrix formalism. For this, inhomogeneously broadened two- and three-level quantum systems are used. In these models, the distribution of natural frequencies follows a Lorentzian function. The absorptive and dispersive nonlinear optical responses are determined for the considered quantum models. The results presented in this work show potential applications in the development of optical switches and provide a potential method to measure spectral diffusion relaxation times in three-level quantum systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nonlinear Optical Physics & Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.