Abstract

Microscopy of thick biological specimens is often detrimentally affected by specimen-induced aberrations. In the simplest case, these aberrations arise from a refractive index mismatch between the immersion and mounting media. In other situations, the aberrations arise from variations in refractive index within the specimen. These aberrations cause loss of signal and reduced resolution. Aberrations can be corrected using adaptive optics, where a deformable mirror introduces equal but opposite aberrations into the optical path. Aberration correction can be performed by reconfiguring the deformable mirror and using the fluorescence signal as feedback, effectively maximising the fluorescence intensity. However, the degree to which aberrations affect the intensity is related to the distribution of fluorescence in the specimen. Signals from point-like objects are affected more than equivalent signals from from planar or volume objects. We investigate this effect and discuss the implications for adaptive optical microscopy of biological specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.