Abstract

Seed oil content is an important agricultural characteristic in rapeseed breeding. Genetic analysis shows that the mother plant and the embryo play critical roles in regulating seed oil accumulation. However, the overwhelming majority of previous studies have focused on oil synthesis in the developing seed of rapeseed. In this study, to elucidate the roles of reproductive organs on oil accumulation, silique, ovule, and embryo from three rapeseed lines with high oil content (zy036, 6F313, and 61616) were cultured in vitro. The results suggest that zy036 silique wall, 6F313 seed coat, and 61616 embryo have positive impacts on the seed oil accumulation. In zy036, our previous studies show that high photosynthetic activity of the silique wall contributes to seed oil accumulation (Hua et al., 2012). Herein, by transcriptome sequencing and sucrose detection, we found that sugar transport in 6F313 seed coat might regulate the efficiency of oil synthesis by controlling sugar concentration in ovules. In 61616 embryos, high oil accumulation efficiency was partly induced by the elevated expression of fatty-acid biosynthesis-related genes. Our investigations show three organ-specific mechanisms regulating oil synthesis in rapeseed. This study provides new insights into the factors affecting seed oil accumulation in rapeseed and other oil crops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call