Abstract

BackgroundSince Spartina alterniflora (simplified as Spartina) has strong ecological competitiveness and rapid growth, it has been introduced and living in the coastal wetland regions of China for more than 30 years. Taking coastal wetland in the Beibu Gulf of south China as an example, the effects of Spartina invasion on soil quality were investigated to provide scientific basis for soil management.MethodologyThe soil quality of six different coastal wetlands, i.e. mangrove (vegetation coverage is above 95%), mangrove- Spartina ecotones (vegetation coverage is above 95%), sparse mangrove (vegetation coverage is 10%-20%), sparse mangrove- Spartina ecotones (vegetation coverage is about 80%), Spartina (vegetation coverage is about 80%) and bare beach (no plants), were analyzed using the following indicators: pH, cation exchange capacity, contents of total nitrogen, total phosphorus and organic carbon, microbial biomass carbon, microbial biomass nitrogen, microbial carbon / organic carbon, and activities of urease, acid phosphatase, invertase, polyphenol oxidase and catalase.Principal FindingsThe results showed that compared to mangrove wetland, most indicators in the mangrove-Spartina wetland showed a decline tendency except pH value, and the contents of total phosphorus and organic carbon, microbial biomass carbon and soil microbial biomass nitrogen, and the activities of acid phosphatase and invertase were significantly reduced (P<0.05). Compared to sparse mangrove wetland and bare beach, the Spartina invasion wetland (sparse mangrove-Spartina wetland and Spartina wetland) had higher contents of total nitrogen, total phosphorus and organic carbon, microbial biomass carbon, microbial biomass nitrogen, cation exchange capacity and the activities of urease and acid phosphatase, so soil quality in the sparse mangrove wetland and bare beach was significantly improved. Factor Analysis and PCA also showed that: the quality of mangrove wetland soil is better than that of mangrove-Spartina ecotones wetland soil; the quality of sparse mangrove-Spartina ecotones wetland soil is better than that of sparse mangrove wetland soil; the quality of Spartina wetland soil is better than that of bare beach wetland soil.Conclusions/SignificanceTherefore, in the invaded Beibu Gulf wetland ecosystems of south China, for the mangrove wetlands where the productivity of native plant was higher than that of Spartina, the Spartina invasion can cause soil degradation significantly and it must be strictly controlled, while for sparse mangrove wetland and bare beach where the productivity of native plant was lower than that of Spartina, Spartina invasion can improve the soil quality. Thus our study may help to better understand the effect of plant invasion.

Highlights

  • Spartina alterniflora is a perennial herb originating from the mud flat on the coast of the Atlantic [1]

  • The results showed that compared to mangrove wetland, most indicators in the mangroveSpartina wetland showed a decline tendency except pH value, and the contents of total phosphorus and organic carbon, microbial biomass carbon and soil microbial biomass nitrogen, and the activities of acid phosphatase and invertase were significantly reduced (P

  • Because the Spartina invasion increases root biomass and Spartina can absorb nitrogen form that cannot be absorbed by native plants, the increase of aboveground net primary production provides more energy for nitrogen fixing microorganisms, and the content of total nitrogen is improved in the coastal wetland [20]

Read more

Summary

Introduction

Spartina alterniflora (simplified as Spartina) is a perennial herb originating from the mud flat on the coast of the Atlantic [1]. Compared with the local species of Suaeda (Suaeda salsa) and Reed (Phragmites australis) in the coastal area of the Yangtze River basin, the aboveground and underground biomasses of Spartina are five times as much as those of Suaeda salsa, and Spartina community decreases soil respiration-rate, increases soil organic carbon (SOC), and improves the carbon sequestration capacity [4,5]. The Spartina invasion significantly increases the primary productivity and carbon sequestration capacity of the ecosystems. Since Spartina alterniflora (simplified as Spartina) has strong ecological competitiveness and rapid growth, it has been introduced and living in the coastal wetland regions of China for more than 30 years. Taking coastal wetland in the Beibu Gulf of south China as an example, the effects of Spartina invasion on soil quality were investigated to provide scientific basis for soil management

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call