Abstract

Abstract This study investigates the effects of spark plasma sintering (SPS) on the microstructure and properties of cold-sprayed metallic coatings. Water-atomized Cu powder was deposited on Al 5052 substrates by high-pressure cold gas spraying, and the resulting coatings were treated by spark plasma sintering and annealing heat treatment (AHT) at 200°C, 300°C, and 400 °C. To assess the effects of diffusion generated by pulsed dc power, a vertical load was not applied in the SPS system. In addition, a short duration time was used to inhibit crystal grain growth. Treated specimens were evaluated by SEM, EBSD, and hardness and tensile testing. The findings show that the microstructure and hardness of SPS specimens treated at 300 °C are close to that of AHT specimens treated at 400 °C. Tensile strength, however, is clearly higher in the SPS300 specimens, indicating that pulsed dc power accelerates particle interdiffusion due to Joule heating and electromigration, thereby increasing adhesion strength between particles in the coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call