Abstract

This study evaluated the effects of soybean meal (SBM) and heat-moisture-treated canola meal (TCM) on milk production and methane emissions in dairy cows fed grass silage-based diets. Twenty-eight Swedish Red cows were used in a cyclic change-over experiment with 4 periods of 21 d and with treatments in 2×4 factorial arrangement (however, the control diet without supplementary protein was not fed in replicate). The diets were fed ad libitum as a total mixed ration containing 600g/kg of grass silage and 400g/kg of concentrates on a dry matter (DM) basis. The concentrate without supplementary protein consisted of crimped barley and premix (312 and 88g/kg of DM), providing 130g of dietary crude protein (CP)/kg of DM. The other 6 concentrates were formulated to provide 170, 210, or 250g of CP/kg of DM by replacing crimped barley with incremental amounts of SBM (50, 100, or 150g/kg of diet DM) or TCM (70, 140, or 210g/kg of diet DM). Feed intake was not influenced by dietary CP concentration, but tended to be greater in cows fed TCM diets compared with SBM diets. Milk and milk protein yield increased linearly with dietary CP concentration, with greater responses in cows fed TCM diets compared with SBM diets. Apparent N efficiency (milk N/N intake) decreased linearly with increasing dietary CP concentration and was lower for cows fed SBM diets than cows fed TCM diets. Milk urea concentration increased linearly with increased dietary CP concentration, with greater effects in cows fed SBM diets than in cows fed TCM diets. Plasma concentrations of total AA and essential AA increased with increasing dietary CP concentration, but no differences were observed between the 2 protein sources. Plasma concentrations of Lys, Met, and His were similar for both dietary protein sources. Total methane emissions were not influenced by diet, but emissions per kilogram of DM intake decreased quadratically, with the lowest value observed in cows fed intermediate levels of protein supplementation. Methane emissions per kilogram of energy-corrected milk decreased more when dietary CP concentration increased in TCM diets compared with SBM diets. Overall, replacing SBM with TCM in total mixed rations based on grass silage had beneficial effects on milk production, N efficiency, and methane emissions across a wide range of dietary CP concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.