Abstract

Auralization, the process of rendering audible the sound field in a simulated space, is a useful tool in the design of acoustically sensitive spaces. The auralization depends on the calculation of an impulse response between a source and a receiver which have certain directional behavior. Many auralizations created to date have used omnidirectional sources; the effects of source directivity on auralizations is a relatively unexplored area. To examine if and how the directivity of a sound source affects the acoustical results obtained from a room, we used directivity data for three sources in a room acoustic modeling program called Odeon. The three sources are: violin, piano, and human voice. The results from using directional data are compared to those obtained using omnidirectional source behavior, both through objective measure calculations and subjective listening tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call